

Building evidence for conservation globally

Open Access

10.11609/jott.2021.13.12.19675-19886 www.threatenedtaxa.org

26 October 2021 (Online & Print) Vol. 13 | No. 12 | Pages: 19675–19886

> 155N 0974-7907 (Online) 155N 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Society www.wild.zooreach.org

Host **Zoo Outreach Organization** www.zooreach.org

No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Deputy Chief Editor

Dr. Neelesh Dahanukar Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Ms. Privanka Iver. ZOO/WILD. Coimbatore. Tamil Nadu 641035. India Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 OHE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho. Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India Dr. Fred Pluthero, Toronto, Canada Mr. P. Ilangovan, Chennai, India

Web Maintenance

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Typesetting

Mr. Arul Jagadish. ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Mrs. Geetha, ZOO, Coimbatore India

Fundraising/Communications Mrs. Payal B. Molur, Coimbatore, India Subject Editors 2018–2020

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

- Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
- Dr. Vatsavaya S. Raju, Kakatiay University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Plants

- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
- Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
- Dr. Shonil Bhagwat, Open University and University of Oxford, UK Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
- Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
- Dr. Dale R. Calder, Royal Ontaro Museum, Toronto, Ontario, Canada
- Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines
- Dr. F.B. Vincent Florens, University of Mauritius, Mauritius
- Dr. Merlin Franco, Curtin University, Malaysia
- Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India
- Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India
- Dr. Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China
- Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
- Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India Dr. Vijayasankar Raman, University of Mississippi, USA
- Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantpur, India Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India
- Dr. Aparna Watve, Pune, Maharashtra, India
- Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
- Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India
- Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
- Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India
- Dr. M.K. Janarthanam, Goa University, Goa, India
- Dr. K. Karthigevan, Botanical Survey of India, India
- Dr. Errol Vela, University of Montpellier, Montpellier, France
- Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
- Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
- Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
- Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines
- Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
- Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India
- Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
- Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
- Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Invertebrates

- Dr. R.K. Avasthi, Rohtak University, Haryana, India
- Dr. D.B. Bastawade, Maharashtra, India
- Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
- Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
- Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa
- Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands
- Dr. Brian Fisher, California Academy of Sciences, USA
- Dr. Richard Gallon, llandudno, North Wales, LL30 1UP Dr. Hemant V. Ghate, Modern College, Pune, India
- Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh
- Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

continued on the back inside cover

- Dr. Jan J. Kitching, Natural History Museum, Cromwell Road, UK
- Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
- Dr. John Noyes, Natural History Museum, London, UK

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

Caption: Stripe-backed Weasel Mustela strigidorsa. Medium-digital, Software-procreate, Device-iPad + Apple pencil © Dhanush Shetty. Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2021 | 13(12): 19702–19713

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

https://doi.org/10.11609/jott.7296.13.12.19702-19713

#7296 | Received 03 April 2021 | Final received 25 July 2021 | Finally accepted 02 September 2021

Grass species composition in tropical forest of southern India

M. Ashokkumar ¹, S. Swaminathan ² & R. Nagarajan ³

¹Bombay Natural History Society, Hornbill House, S.B. Singh Road, Mumbai, Maharastra 400001, India.
 ¹Centre for Wildlife Studies, Kerala Veterinary and Animal Sciences University, Pookode, Kerala 673576, India.
 ²Wildlife SOS, Bannerghatta National Park, Bengaluru, Karnataka 560083, India.
 ³PG and Research Department of Zoology and Wildlife Biology, A.V.C. College, Mannampandal, Mayiladuthurai,

Tamil Nadu 609305, India. ¹ vimalashok7@gmail.com (corresponding author), ² swaminathan@wildlifesos.org, ³ r.nagarajan@ex.ac.uk

Abstract: Grass composition was assessed by plot method (1 m²; n= 1,749) in three habitats (dry deciduous-DDF, moist deciduous-MDF, and thorn forest-TF) at Mudumalai Tiger Reserve, southern India across different seasons from Jan 2004 to Dec 2007. The grass species richness and availability (per cent composition) varied significantly with habitats. Seventy-four species of grasses and sedges were recorded in all three habitats, with a few species common in all habitats. Grass availability varied significantly in different habitats across seasons and was positively influenced by precipitation. Among biotic factors, regeneration and shrub density had a primary influence on grass availability, followed by herb, sedge and weed density. The principal coordinate analysis revealed seven major associations in the tropical forest. There were considerable changes in the composition and association of grasses when compared to the past. Fire resistant species such as *Themeda triandra*, *Heteropogan contortus* and *T. cymbaria* dominated in the DDF. Grass species *Aristida/Eragorstis* were recorded in the TF, which were considered as indicators of heavy grazing pressure. Grass species that were reported rare and sporadic in the earlier study were not recorded, which emphasizes better pasture management in the tropical forest. Grass species composition and availability was threatened by invasion of weeds.

Keywords: Graminae, Mudumalai Tiger Reserve, influence of fire on grass, Themeda triandra, Heteropogon contortus, Themeda cymbaria.

Editor: P. Ravichandran, Manonmaniam Sundaranar University, Tirunelveli, India.

Date of publication: 26 October 2021 (online & print)

OPEN ACCESS

() ()

Citation: Ashokkumar, M., S. Swaminathan & R. Nagarajan (2021). Grass species composition in tropical forest of southern India. *Journal of Threatened Taxa* 13(12): 19702–19713. https://doi.org/10.11609/jott.7296.13.12.19702-19713

Copyright: [©] Ashokkumar et al. 2021. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Hill Area Development Programme (HADP)/Western Ghats Development Programme (WGDP), Udhagamandalam, The Nilgiris.

Competing interests: The authors declare no competing interests.

Author details: ASHOKKUMAR MOHANARANGAN (MA) is a wildlife biologist, completed his master's and PhD in Wildlife biology, from AVC College. He has been associated with organizations such as WWF-India, BNHS and AVC college providing technical support. He is passionate about wild animal ecology and conservation. Presently he is working as Teaching Assistant at KVASU-CWS. SHANMUGAVELU SWAMINATHAN (SS) is a wildlife biologist, who has been working on large mammal populations, carnivore ecology and wildlife management for more than 30 years in the Western Ghats. Presently he is working as a senior wildlife biologist at Wildlife SOS. Rajaratinavelu Nagarajan (RN) is the Principal and professor and head of the Zoology Dept. A.V.C College and Honorary Associate Professor of Envt. Sc., University of Exeter, UK. He has more than 30 years of research and teaching experience. He is an eminent scholar and excellent mentor, who has always been a source of inspiration.

Author contributions: MA developed the concept, formulated a hypothesis, and carried out data analysis. SS supported in receiving funds, field data collection and preliminary analysis. Dr. RN provided technical support and supervised the work. All the authors contributed to the preparation of the final manuscript.

Acknowledgements: We thank the Tamil Nadu Forest Department for permission to research within Mudumalai Tiger Reserve. We thank the Hill Area Development Program (HADP) for funding the study. We thank the Bombay Natural History Society, Nilgiri Wildlife and Environment Association, and A.V.C. College Department of Zoology and Wildlife Biology for their support.

INTRODUCTION

Grasslands are highly dvnamic ecosystems encompassing natural and semi-natural pastures, woodlands and scrubs dominated by grasses (Blair et al. 2014). Grasses are one of the important sources of biodiversity and the primary food source for many herbivores that support ecosystem function, agricultural sustainability, and livelihood for many pastoral communities (Sala & Paruelo 1997; White et al. 2000). In India, 1,506 species of grass belonging to 266 genera were reported (Kellogg et al. 2020). Peninsular India has maximum diversity and endemism (Karthikeyan 1989). The study of grass species is important since they are sensitive to global warming and altered precipitation patterns, and exhibit immediate response to climate change (Knapp & Smith 2001).

Grass species in the Western Ghats are threatened by domestic livestock, mining, wind-farms, plantations, canals and dams have led to degradation and loss of grassland habitats (Vanak 2013). The invasion of exotic species into tropical forest threatens grasslands (Srinivasan 2011; Ashokkumar et al. 2012). Invasions not only affect grass composition but also the foraging efficiency of herbivores (Wilson et al. 2013). Pasture management is essential in protected area management strategies to reduce the human-animal interactions. Although grasses have wide ecological amplitude and several adaptations to withstand trampling, grazing, fire, flood, and drought, they face severe competition for light and nutrients from aggressive wood species and invasive plants in tropical forests.

Mudumalai Tiger Reserve (MTR) is located in the Western Ghats, one of 34 global biodiversity hotspots (Myers et al. 2000). There were no earlier studies on the dynamics of grass species composition and diversity in similar tropical forest in Southern India. Though tree, herb and shrub species were studied in detail (Robert et al. 2002; Nath et al. 2006) information on grass species is lacking in the tropical ecosystem. In addition, the study area also has baseline data on grass species composition studied a decade before (Sivaganesan 1991), which enabled comparison with the present study. Sivaganesan (1991) studied grass composition in the study area in the year 1985, and he has studied grass species composition using strip transects of one kilometer length (n= 20) and laid 1 m² plots at every 250 m interval, resulting in sampling of five plots per transect and a total of 100 plots across different vegetation types.

Seasonal changes in the phenology of grass species influence herbivore movement, distribution

635

and abundance (Sivaganesan 1991; Baskaran 1998). Cattle grazing and fire have major impacts on species composition of woody plants (Kodandapani et al. 2008) and grasses. The present study investigated the effect of environmental factors on grass availability (grass abundance) and grass association in tropical forests of Southern India. Studies on the grass association help to understand the grass communities in tropical forest and their dynamics due to climatic and anthropogenic factors.

STUDY AREA

Mudumalai Tiger Reserve (MTR) is located in the Nilgiris District of Tamil Nadu (11º 32' and 11º 42' N and 76º 20' and 76º 45' E). It extends over an area of 321 km² and forms a part of the Nilgiris Biosphere Reserve (Figure 1). It is part of a contiguous stretch of forest with Bandipur Tiger Reserve to the north, Segur Reserve forest to the east, Wayanad Wildlife Sanctuary to the west, and Gudalur forest division to the South. Altitude varies from 485 to 1,226 m with a general elevation of about 900 to 1,000 m. The annual rainfall varies from 1,001 mm to 1,648 mm. The sanctuary receives rain from both south-west (May to August) and north-east (September to December) monsoons. Based on climate seasons can be classified into dry season (January to April), first wet season (south-west monsoon) and second wet season (north-east monsoon). The three major forest types in the study area are tropical moist deciduous forest (MDF), dry deciduous forest (DDF) and tropical thorn forest (TF) (Champion & Seth 1968).

The major tree species association in MDF is Lagerstoroemia-Terminalia-Tectona. The ground flora mainly composed of Helicteres isora, Desmodium sp., and Curcuma sp. The dominant grass species are Cyrtococcum accrescens, C. oxyphyllum, Bothriochloa pertusa, Oplismensus compositus and Oryza meyeriana occur. Bamboo Bambusa arundinacea is very common along the perennial water sources. Swamp vegetation mainly consists of tall grass Cenchrus hohenackeri. Tree species in DDF is dominated by Anogesis latifolia, Terminalia crenulata, Tectona grandis, Diospyros montana, and Gmelina arborea. Shrubs include Helicteres isora, Antidesma diandram, and Pavetta indica. Grasses species is dominated by tall perennial rhizomatous grasses such as Themeda cymbaria, Cymbopogon flexuosus, and Apluda mutica in dry deciduous tall grass area. T. triandra, Setaria intermedia, and Dicanthium caricosum are common in short grass

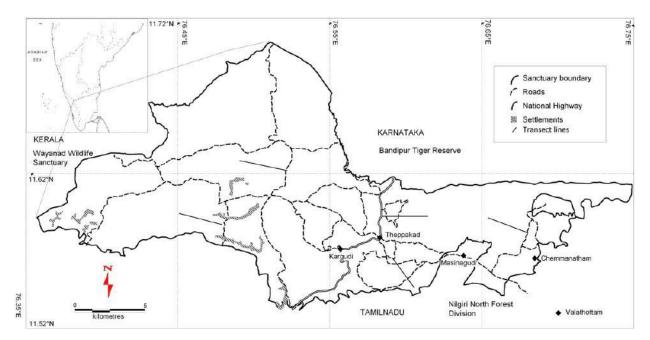


Figure 1. Map showing the location of transect lines used for vegetation sampling at Mudumalai Tiger Reserve.

area. TF is dominated tree species such as Acacia sp., Albizia sp., Premna tomentosa, Dalbergia lanceolaria, and Ziziphus sp. The shrub species includes Acacia pinnata, Canthium parviflorum, Rhus mysorensis, and Mytenus emarginatus. Grass species in TF includes Aristida adscencsionis, Heteropogon contortus, and Tragus mongolorum. The study area is threatened by habitat degradation from overgrazing and human disturbance.

METHODS

Five transects each of three-kilometre length were marked in three habitats (DDF 3; MDF 1, and TF 1; Figure 1). Two transects in Mudumalai range, two transects in Theppakad range and one in Masinagudi range were marked and sampled. The locations of transects were given in the georeferenced study area map (Figure 1). A total of 30 plots (1 m²) were laid at an interval of 100m in each transect. Transects were sampled two times per season in alternate months. A total of 825 plots were laid in all three vegetation types (DDF 493, MDF 169, TF 103) in different seasons. In addition to this data, grass species composition, which was collected as part of Gaur Bos gaurus foraging ecology study was used. A total of 924 plots (DDF 669, MDF 110, TF 145) of 1 m² were laid in the Gaur foraged areas in different habitats, to assess the forage plant species including grass species and their consumption.

A herbarium of grass species that include both grass and sedges was made for confirmation of the species identity. All specimen vouchers were deposited in the Center for Ecological Sciences, Indian Institute of Sciences, Bangalore. Plant species were identified using Gamble (1935), Saldanha & Nicolson (1976), Saldanha (1984, 1996), Sharma et al. (1977), and Kellogg et al. (2020). Grass cover in each quadrat was visually estimated by giving a percent cover. Percent cover was given according to the proportion of area (within the quadrat) covered by grass (Giles 1971; Sivaganesan 1991). The other variables such as grass height, percent green grass, grass texture, and phenology were recorded (Jarman & Sinclair, 1979; Menaut and Cesar 1979; Sivaganesan 1991; Baskaran 1998).

Precipitation data was collected on monthly basis from weather stations located at the different habitats of the study area maintained by Center for Ecological Science, Indian Institute of Science. The information on extant and frequency of fire was collected from forest management plan and studies on fire in the study area (Kodandapani et al. 2008). Grass species richness, mean percent availability and grass height were tested using ANOVA.

The effect of environmental and biotic variable on grass availability was tested using multiple regressions. The relationship between the percent grass availability and environmental factors (habitat, season, precipitation and fire) and biotic factors (shrub, regeneration, herb, sedges, and weed) were investigated using multiple regression. The variations among the habitats, seasons and fire were controlled by entering these predictors as a dichotomous variable.

Grass species association was determined by principal co-ordinate analysis and species association was plotted in Euclidean space. The variables used in the analysis are percent composition of grass, height, habitat, elevation, fire, and spatial locations in the study area. Statistical analyses were performed by using Windows based statistical package *viz.* SPSS 21.0 (SPSS Inc., Chicago, IL, USA) and Past software 3.17 (Hammer et al. 2001).

RESULTS

A total of 74 species of grasses and sedges were recorded in the MTR with a maximum of species in DDF followed by TF and MDF (Table 1). MDF had lower grass species diversity (0.6) than other habitats. Though, species richness was high in TF (3.4), the mean percent availability of grass was less in TF (12.7%) than DDF (19%) and MDF (17%). The species richness and mean percent availability of grass varied significantly among habitats. The equitability of species was equal in all the habitats. While grass species diversity was higher in TF, the abundance of grass was higher in deciduous forests (MDF and DDF).

Species composition and availability

Grass species composition varied among different habitats. Altogether, 66 grasses and eight species of sedges were recorded in three habitats. There were 21 species were common in all habitats, viz., *Themeda triandra, Oplismenus undulatifolius, Setaria intermedia, S. flavidum*, and *S. pumila* (Table 2). Among different grass species *Perotis indica, Cymbopogon* sp., *Cappillipedium assimile, E. spicatus*, and *Kyllinga* sp. were recorded only in DDF. Likewise, species such as *Cyrtococcum oxyphyllum, Paspalum conjugatum*, and *Cenchrus polystachios* in MDF and *Bothriochloa* sp. *Eragrostis atrovirens, Pseudanthistiria umbellata, P. tripheron*, and *Leersia hexandra* were recorded only in TF.

In DDF dominant grass species included both tall and short grass species. Tall grass species include *T. cymbaria* (30%), *I. cylindrica* (13%) and *S. fertilis* (13%) and short grasses were *T. triandra* (27%), *O. undulatifolius* (25%) and *S. intermedia* (22%). In MDF, the dominant species were *C. oxyphyllum, E. indica, C. patens, P.*

polystachion and A. compressus. Swamp areas of both DDF and MDF were dominated by grass species such as C. polystachyios, A. compressus, I. cylindrica, and E. indica. Dominant grass species in TF were D. bicornis, P. umbellata, D. caricosum, and A. mutica (Table 2).

The percent grass composition varied significantly across season (F= 11.6; p <0.001) in different habitats (F= 13.92; p <0.001). Fire was not recorded in the TF area during the study period. Grass availability was higher in the MDF during dry season (27.7%). The mean percent available grass was highest in first wet season in the DDF (46 %) in the fire burnt areas (Figure 2). Grass availability was low in second wet season in TF. The three-way interaction among fire, habitats and seasons in ANOVA on grass availability was significant. The abundance of grass was higher in the DDF and MDF in wet seasons in the unburnt areas.

The influence of environmental variables on grass availability

The grass availability had a linear relationship with predictors. The model was highly significant and explained 23% variations in grass availability (%). Previous month precipitation positively influenced grass availability. All the other variables negatively influenced grass availability. From the Standardized Partial Regression Coefficients (SPRC), it was inferred that the shrubs had the primary influence on growth of grasses followed by sedges, regeneration, herbs, and weed (Table 3; Figure 3). Furthermore, the co-efficient of habitat and season indicated that the percent availability of grass reduced significantly among three habitats and seasons. Though, fire negatively influenced grass availability, it was not statistically significant in the model.

Grass species association

Principal coordinate analysis (multidimensional scaling) summarizes inter grass species association based on dissimilarity in a Euclidean space. There were seven distinct clusters formed. Among different variables elevation, height and percent composition collectively contributed 87% of the variance. There were four distinct clusters identified based on elevation and further separation was based on habitat and microhabitat (Figure 4). The first cluster consisted of grass species such as *Themeda triandra, Setaria intermedia, Enteropogon dolichostachyus* and *Oplismenus undulatifolius* in DDF. The second cluster consisted of *Axonopus* sp. (Image 1e) and *Bothriochloa bladhii* in riverine forest. The third cluster consisted of thorn forest species such as *Arthraxon, Chrysopogon, Psudanthistiria,* and *Cynodon*

Table 1. Mean percent grass available (±SD), species richness per plot, diversity and equitability of grass (and sedges) in different habitats of Mudumalai Tiger Reserve.

					Index value		
Habitat ^a		Total number of species	Species richness (S) / plot (±SD)	Mean percent (%) ± SD	Shannon Weiner Diversity (H')	Equitability (J')	
DDF (n= 1,162)		61	2.9 ± 1.30	18.8 ± 22.45	0.65 ± 0.40	0.68 ± 0.22	
MDF (n= 279)	DF (n= 279) 33 2.7		2.7 ± 1.34	17.5 ± 21.67	0.60 ± 0.42	0.69 ± 0.21	
TF (n= 248)		53	3.4 ± 1.79	12.7 ± 16.79	0.80 ± 0.45	0.72 ± 0.21	
Overall (n= 1,749)		74	3.0 ± 1.42	17.3 ± 21.40	0.67 ± 0.42	0.69 ± 0.22	
4101/4	F		F ₁₆₄₅ = 20.3	F _{2,821} = 14.04	F ₁₆₄₅ = 20.5	F ₁₄₃₂ = 5.18	
ANOVA	Р		p <0.001	p <0.001	p <0.001	p <0.001	

^a DDF—Dry Deciduous Forest | MDF—Moist Deciduous Forest | TF—Thorn forest.

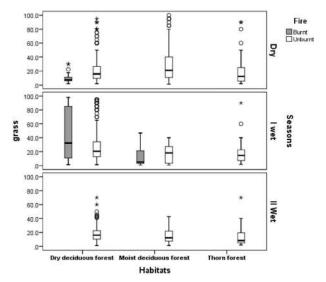


Figure 2. Grass composition (%) in different habitats, seasons, and fire (burnt/unburnt) in Mudumalai Tiger Reserve.

sp. Forth cluster consisted of Cenchrus, Sporobolus, Centotheca, and Eragrostis sp. in dry deciduous tall grass at 1,000 m elevation. Fifth cluster composed of T. cymbaria, Ischaemum, Cyrtococcum, and Kyllinga species in the moist deciduous forest. The sixth cluster composed of Imperata, Echinochloa, and Cenchrus hohenackeri in swamp areas of MDF. Dry deciduous higher elevation regions composed of Arthraxon, Cappillipedium, and Setaria species.

DISCUSSION

A total of 66 species of grasses and eight sedges were recorded in the Mudumalai Tiger Reserve. The number of species recorded was lower than earlier report (75 species) in the study area (Sivaganesan 1991). The marginal variation in the species composition could be

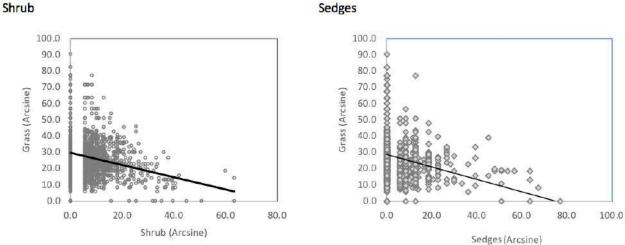


Figure 3. Relation between biotic factors and grass composition at Mudumalai Tiger Reserve.

Ashokkumar et al.

(H) 7.7

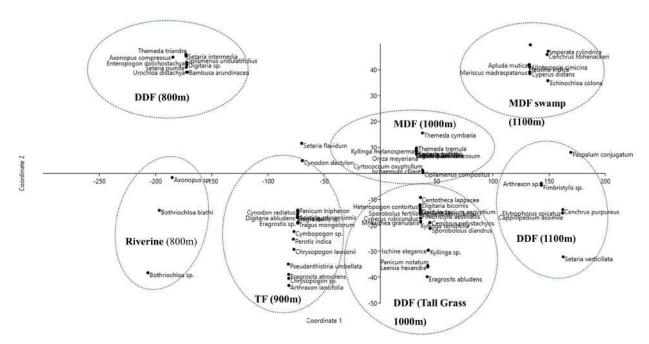
Table 2. Percent grass (grass and sedges) available in different habitats of Mudumalai Tiger Reserve during the study period (Data sorted in descending order based on total percent).

			Habitats				
	Species	DDF	MDF	TF	Total		
	Grass						
1	Axonopus compressus	45.7 ± 39	28.2 ± 31.67	-	33.4 ± 34.34		
2	Cyrtococcum oxyphyllum	-	33.4 ± 22.19	-	33.1 ± 22.3		
3	Cenchrus hohenackeri	27.4 ± 24.17	36.3 ± 33.65	-	33.1 ± 30.6		
4	Themeda cymbaria	30.4 ± 22.45	25 ± 17.32	-	30.1 ± 22.15		
5	Themeda triandra	27.2 ± 21.53	20.2 ± 20.17	23 ± 26.08	26.7 ± 21.68		
6	Oplismenus undulatifolius	25.1 ± 24.99	4.3 ± 4.27	26.7 ± 24.9	25.3 ± 24.9		
7	Axonopus sp.	28.4 ± 31.12		6.5 ± 5.58	23.9 ± 29.19		
8	Setaria intermedia	22.3 ± 22.06	25 ± 7.07	31.4 ± 26.1	23.6 ± 22.78		
9	Pseudanthistiria umbellata	-	-	23.4 ± 20.47	23.4 ± 20.47		
10	Centotheca lappacea	-	-	40 ± 0.01	20.5 ± 27.58		
11	Setraria flavidum	17.5 ± 18.03	2 ± 0.01	25.9 ± 16.92	18.9 ± 18.06		
12	Setaria pumila	18.5 ± 21.39	28 ± 0.01	17.3 ± 16.38	18.5 ± 21		
13	Enteropogon dolichostachyus	16.2 ± 18.84	14.1 ± 14.95	20.7 ± 24.35	16.6 ± 19.42		
14	Eleusine indica	22.4 ± 31.09	14 ± 13.86	7.4 ± 7.16	16.3 ± 22.74		
15	Cenchrus polystachios	-	15.6 ± 13.53	-	15.6 ± 13.53		
16	Heteropogon contortus	19.2 ± 20.03	-	10 ± 13	15.3 ± 17.93		
17	Cyrtococcum accrescens	8.7 ± 13.06	20.1 ± 21.69	-	15.1 ± 19.3		
18	Setaria verticillata	-		15 ± 0.1	15 ± 0.1		
19	Imperata cylindrica	13 ± 13.9	16.2 ± 28.06	-	13.9 ± 18.92		
20	Digitaria sp.	11.6 ± 12.51	12.3 ± 15.37	16.9 ± 12.8	13.6 ± 12.82		
21	Bothriochloa sp.	-	-	13.6 ± 7.47	13.6 ± 7.47		
22	Panicum sp.	14.4 ± 8.46	-	1 ± 0.01	13.1 ± 9.04		
23	Digitaria bicornis	13.8 ± 21.91	4 ± 1.73	9.8 ± 15.84	12.2 ± 19.82		
24	Digitaria griffithii	11.9 ± 13.2	5 ± 0.01	12 ± 6.35	11.9 ± 12.65		
25	Perotis indica	11.9 ± 17.94	-	-	11.9 ± 17.94		
26	Panicum tripheron	7.8 ± 11.67	-	15.2 ± 14.85	11.8 ± 13.87		
27	Urochloa distachya	12.2 ± 11.92	12.5 ± 10.61	10.6 ± 9.93	11.8 ± 11.23		
28	Apluda mutica	9.4 ± 11.32	9.2 ± 13.09	18 ± 18.37	11.8 ± 14.16		
29	Dichanthium caricosum	10 ± 0.01	5 ± 0.01	13 ± 9.08	11.4 ± 8.02		
30	Eragrostis tenuifolia	15.8 ± 23.01	-	3.1 ± 2.77	11.4 ± 19.53		
31	Sporobolus fertilis	13 ± 12.75	-	1 ± 0	11.4 ± 12.54		
32	Ischaemum ciliare	10.2 ± 10.98	11 ± 15.25	-	10.9 ± 14.7		
33	Setaria palmifolia	10.8 ± 12.59	1 ± 0.01	10 ± 0.01	10.5 ± 12.33		
34	Eragrosteilla sp.	11.8 ± 8.67	-	8.2 ± 13.66	10.1 ± 11.39		
35	Eragrosits atrovirens	-	-	10 ± 7.07	10 ± 7.07		
36	Oplismenus compositus	6.3 ± 10.4	13.2 ± 13.87	-	9.9 ± 12.79		
37	Paspalum conjugatum	-	9 ± 9.64	-	9 ± 9.64		
38	Aristida adscensionis	8.4 ± 7.6	-	8.8 ± 10.18	8.7 ± 9.89		
39	Cynodon radiatus	15 ± 0.1	-	2 ± 0.01	8.5 ± 9.19		
40	Echinochloa colona	6.3 ± 7.51	15 ± 0.1	-	8.5 ± 7.51		
41	Themeda tremula	7.2 ± 3.13	5 ± 0.1	20 ± 0.1	8.5 ± 5.4		

Ashokkumar et al.

	Habitats					
	Species	DDF	MDF	TF	Total	
42	Dactyloctenium aegyptium	13.9 ± 16.5	-	5.3 ± 7.09	8.5 ± 11.8	
43	Sehima sp.	7.3 ± 15.34	-	11.5 ± 15.73	8.2 ± 15.23	
44	Tragus mongolorum	1 ± 0.01	-	8.1 ± 7.74	8 ± 7.73	
45	Sporobolus sp.	7.8 ± 9.15	7.5 ± 11.22	4.2 ± 3.49	7.5 ± 9.01	
46	Alloteropsis cimicina	5.4 ± 8.93		24.9 ± 25.6	7.5 ± 13.38	
47	Chrysopogon sp.	-	-	7.5 ± 9.46	7.5 ± 9.46	
48	Cymbopogon sp.	7.2 ± 5.18	-	-	7.2 ± 5.18	
49	Cappillipedium assimile	6.8 ± 3.95	-	-	6.8 ± 3.95	
50	Cynodon dactylon	7.1 ± 5.73	1 ± 0.01	3.3 ± 2.08	6.4 ± 5.54	
51	Eragrostis sp.	1 ± 0.01	-	6.6 ± 12.56	6.3 ± 12.22	
52	Oryza meyeriana	7.3 ± 10.01	4.7 ± 9.64	10 ± 0.1	5.8 ± 9.74	
53	Sporobolus diandrus	4.8 ± 3.77	10 ± 0.1	-	5.8 ± 4.02	
54	Digitaria abludens	20 ± 0.1	-	4.5 ± 4.96	5.1 ± 5.65	
55	Elytrophorus spicatus	5 ± 0.1	-	-	5 ± 0.1	
56	Eragrosits abludens	-	-	5 ± 0.1	5 ± 0.1	
57	Cenchrus purpureus	5 ± 0.1		-	5 ± 0.1	
58	Bambusa arundinacea	5.4 ± 2.88	4.5 ± 4.37	1.7 ± 0.58	4.3 ± 3.74	
59	Arthraxon sp.	7.3 ± 8.62	-	2.5 ± 1.9	3.1 ± 3.58	
60	Panicum notatum	-	-	3 ± 0.1	3 ± 0.1	
61	Bothriochloa bladhii	2 ± 0.1	-	-	2 ± 0.1	
62	Isachne elegance	2 ± 0	-	-	2 ± 0	
63	Leersia hexandra	-	-	2 ± 0.1	2 ± 0.1	
64	Arthraxon lancifolia	-	-	1.5 ± 0.58	1.5 ± 0.58	
65	Mnesithea granularis	1 ± 0.1	-	1.5 ± 0.55	1.4 ± 0.53	
66	Chrysopogon lawsonii	1 ± 0.1	-	-	1 ± 0.1	
	Sedges					
67	Kyllinga melanosperma	15.2 ± 22.46	7.1 ± 7.22	6.2 ± 7.95	12 ± 18.59	
68	Mariscus madraspatanus	6 ± 8.37	17.4 ± 26.83	2.5 ± 1.22	9.8 ± 17.98	
69	Fimbristylis aestivallis	7.4 ± 5.87	-	6.2 ± 6.02	7 ± 5.73	
70	Cyperus distans	4.2 ± 4.91	8.1 ± 13.59	5 ± 0	4.9 ± 7.42	
71	Cyperus rubicundus	6.2 ± 5	-	3.2 ± 3.75	4.2 ± 4.41	
72	Fimbristylis sp.	3.7 ± 2.36	-	2.6 ± 2.4	3 ± 2.41	
73	Kyllinga sp.	2.6 ± 2.78	-	-	2.6 ± 2.78	
74	Kyllinga tenuifolia	2 ± 0.1	-	1 ± 0	1.3 ± 0.58	

DDF-Dry deciduous forest | MDF-Moist deciduous forest | TF-Thorn forest | --Species were not recorded.


due to difference in the area of sampling, earlier study covered greater area of sampling. Sivaganesan (1991) divided the tiger reserve into five zones and did sampling in five transects with 30 plots in each transects with 250 m interval. The number of transect in Moist deciduous forest is less than earlier study. Further, there were invasion of exotic weed species such as *Lantana camera* and *Chromolena odorata* in the study area (Ashokkumar et al. 2012; Wilson et al. 2013), which were less and restricted to tourism zone in the study area. Whereas the growth of weeds was extensive and occupied all the grassland patches of DDF and MDF.

Grass species richness, composition varied among habitats, with maximum number of species recorded in DDF followed by TF. *Cymbopogon* sp. found in hill slopes of DDF in the elevation range of 2,000–3,000 m,

Table 3. Multiple regression equation to investigate the effect of environmental (habitat, fire and precipitation) and vegetation factors on the grass availability (%) in Mudumalai Tiger Reserve.

Independent variable	Predictor	Coefficients ± SE	SPRC*	t	р	Model (r²)	Model (p)
	(Constant)	38.17 ± 2.535		15.059	<0.001	23.1	p<0.001
	Fire	-0.76 ± 1.100	-0.015	694	0.488		
	Habitat	-3.59 ± 0.414	-0.191	-8.653	<0.001		
	Season	-2.60 ± 0.598	-0.138	-4.353	<0.001		
C (01)	Previous month precipitation (mm)	2.82 ± 0.403	0.229	6.998	<0.001		
Grass (%)	Herb (%)	-0.31 ± 0.042	-0.161	-7.286	<0.001		
	Regeneration (%)	-0.52 ± 0.063	-0.179	-8.206	<0.001		
	Sedges (%)	-0.37 ± 0.039	-0.200	-9.341	<0.001		
	Shrub (%)	-0.46 ± 0.038	-0.268	-12.096	<0.001		
	Weed (%)	-0.23 ± 0.043	-0.112	-5.254	<0.001		

*-Standardized partial regression coefficient.

P. polystachyon recorded in swamp areas of MDF in the elevation of above 1,000 m, and *A. adscensionis* found in TF in the elevation less than 600 m. Grass species such as *C. polystachios, L. hexandra,* and *I. cylindrica* were observed in the swamps of MDF and DDF in MTR. This might have been influenced by high moisture content and nutrients of the soil (Skerman & Riveros 1990). Amarasinghe & Pemadasa (1982) have also concluded that the complex interaction of edaphic factors, altitude, precipitation and human disturbance were responsible for a variation on Montane grasslands in Sri Lanka. Thus,

the grass composition varied depending on altitudes and moisture content of the soil.

Factors influencing grass composition

Shrubs had the primary influence on the grass growth followed by sedges, regeneration, herbs and weeds. Studies done in Prairie grasslands in Canada indicated that shrubs strongly reduced available soil nitrogen and the secondary growth of shrubs allowed them to accumulate more biomass and height that eventually displaced the grass species (Kochy & Wilson 2000).

(H)

Ashokkumar et al.

Image 1. Grass species composition in the selected habitats of Mudumalai Tiger Reserve: a-Dry deciduous tall grass (*Cymbopogon sp.*) | b-Dry deciduous tall grass (*Themeda- Cymbopogon-Imperata*) | c-MDF swamp areas with (*Cenchrus-Themeda-Imperata*) | d-Setaria palmifolia | e-Axonopus compressus | f-Cyrtococcum oxyphyllum. © M. Ashokkumar

The grass species *Axonopus* sp. was recorded only in *L. camara* invaded areas. This grass species was originated in United States and this species itself considered as weed (Skerman & Riveros 1990). Therefore, it competes well with weed species. In addition, both *L. camara* and

Axonopus sp. grow well in humid areas and thus, they do have similar microhabitat preference. The microhabitat preference and weed resistance properties of Axonopus sp. enabled successful survival in *L. camara* invaded areas. Grass species that were recorded in *C. odorata*

invaded areas (*Cenchrus, Setaria*, and *Chrysopogon*) seem to have high alkaline tolerance (Skerman & Riveros 1990). Thus, grass species had species-specific interaction with weed species. The percent availability of grass varied significantly among three habitats and seasons. The seasonal variation in grass availability was due to phenological changes of grass species due to senescence. The phenology of tropical grasses are moisture driven, with germination occurring shortly after the rains of first wet season. Grass senescence occurs in the end of the second wet season or in the early dry season. Both the reproduction and senescence have been influenced by multiple factors such as temperature, rainfall and photoperiod (Blair et al. 2014). Hence the availability of grass was higher in the wet seasons.

The percent grass available was significantly positively correlated with precipitation. Rainfall varied spatiotemporally across vegetation types in the study area. Such a rainfall pattern is ecologically significant and perhaps a boon to the dynamics of the study area. Elephant habitat preference was related to the rainfall in the study area (Sivaganesan 1991). In Africa, several ecologists (Leuthold & Sale 1973; Caughley & Goddard 1975; Leuthold 1976; Eltringham 1979; McNaughton 1985) documented the significance of the rainfall on the habitats and distribution pattern of the larger herbivores. The western part of the study area with MDF receives rainfall during south-west monsoon and eastern part (TF) during north-east monsoon. The grass growth and phenological changes can be seen depending on the precipitation.

Variation in grass composition in the study area

Comparison of grass species composition with earlier study Sivaganesan (1991) revealed that though, there were no changes in the dominant grass species there were considerable changes in the minor grass species composition. The principal coordinate analysis revealed seven distinct clusters of grass species association. Sivaganesan (1991) reported four distinct clusters of grass association in the study area: Themeda-Cymbopogon-Imperata in the dry deciduous tall grass area (Image 1a), Cenchrus-Themeda-Imperata in the swamp area (Image 1c), Cyrtococcum-Apluda-Arthraxon in MDF, and Themeda-Heteropogon-Digitaria-Apluda in the TF area. Changes occurred in the grass species composition in all habitats. The percent availability of grass was reduced when compared to past, possibly due to greater extent of invasion of exotic species.

Sivaganesan (1991) indicated that annual fire seems to influence the species association and succession of

species at Mudumalai. He reported that fire-resistant species such as T. triandra, H. contortus, and T. cymbaria have survived and dominated the dry deciduous forest. This is unison with his finding that the above species also dominated in DDF based on the present study. The fire frequency was also high (22 incidences per annum), and more area was burnt in DDF (56%) than other habitats (Ashokkumar 2011). Grass species which were reported rare and sporadic in the earlier study were not reported in the present survey, for example Chionachne koenigii in DDF and Oryza meyeriana in MDF were not recorded. Similarly, percent composition of Apluda sp. and Arthraxon sp. were less in MDF. Fewer species were recorded in MDF, but the mean percent available grass was more in MDF. The dominant grasses in MDF were tall grass species in the swamp areas which grow up to 3 m, and thus their percent composition was higher. Earlier TF was dominated by T. triandra and H. contortus (Sivaganesan 1991) and these species were poorly represented during the present survey and TF is dominated by Digitaria sp., Pseudanthistiria umbellata. TFs facing severe pressure due to cattle grazing and removal of cattle dung from the forest floor had severely affected the forest regeneration and nutrient cycle. Earlier studies on livestock populations reported 7,248 cattle in the fringe areas (Silori & Mishra 2001) allowed to free graze in the reserve. Continued grazing affects grass availability and species composition.

Protection from cattle grazing

Grass species *Aristida-Eragrostis* were recorded in the TF which were considered as an indicator species of deteriorated grassland (Skerman & Riveros 1990). Grass species such as *Themeda-Heteropogon-Digitaria-Apluda* were dominant species in thorn forest reported in the past. At present, the quality of grass pastures was too poor to provide any grazing. Severe cattle grazing should be stopped for four or five years to allow the succession to progress towards fair condition represented by *Cynodon dactylon* as the first step toward improvement. Thus grasslands of TF required protection of pasture from cattle grazing or at least reduction of cattle pressure for at least four to five years to recover. Species reduced by overgrazing can recover if there were no change in the physical environment.

Influence of fire on grass availability

In the study area during the peak of dry season wildfire was common. These, wildfires were set by the villagers to get fresh fodder for their cattle and easy to move around in burnt areas. Fire in grass patches

25

last only for a short time and high temperatures were maintained for only a few seconds. Temperatures at soil level rise steeply to 175–200 °C depending on wind, height and density, and usually return to ambient temperature within a few minutes (Mondal & Sukumar 2014). The soil temperature at a depth of about two centimeters changes little, varying at most by 14 C. The effect of subterranean portions of grasses is thus slight.

The study area as a whole had a fire-return interval of 3.3 years (Ashokkumar 2011). The vegetation type with the highest mean area burnt was at DDF (Shorea sp. dominant) with 56.6%, whereas, TF had the lowest mean area burnt with 14.6%. Forest fires burnt an average of 30% (98 km²/year) of the forests in each year. Grass biomass was significantly low in burnt areas. Distance from the park boundary was reported as an important factor that predicts the fire-return interval in the study area (Kodandapani et al. 2008). Grass biomass was significantly low in the fire burnt areas of DDF and MDF. Sivaganesan (1991) indicated that the effect of annual fire seems to influence the grass species association and succession of species. On other hand, the annual fire plays an important role in the maintenance of forest stands at deciduous forest and seedling growth. The forest fire scorches the tree seeds of Tectona grandis and facilitates the growth by removing a portion of the seed coat (Seth & Kaul 1978). But overall tree species diversity, structure and regeneration were reduced by fire in tropical forest (Kodandapani et al. 2008), further, the results suggest both grass availability and composition altered by fire.

CONCLUSIONS

The present study provides baseline information on grass species composition in the tropical forest of southern India. There were considerable changes occurred in the grass species composition when compared to past. Grass association revealed seven major types of association in the tropical deciduous forest. Grasslands of TF were dominated by *Aristida-Eragrostis* indicators of heavy gazing and require protection of pasture from cattle grazing or at least reduction of cattle pressure to recover. Grass composition and availability was positively influenced by rainfall and reduced by fire in the tropical deciduous forest. Further grass availability and composition is threatened by invasion of weeds.

REFERENCES

- Amarasinghe, L. & M.A. Pemadasa (1982). The ecology of Montane grassland in Sri Lanka, II- The pattern of four major species. *Journal* of Ecology 70: 17–23.
- Ashokkumar, M. (2011). Population, foraging and activity pattern of Gaur (Bos gaurus H. Smith, 1827) in Mudumalai Tiger Reserve, Southern India. Ph.D. Thesis, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, 159pp.
- Ashokkumar, M., R. Nagarajan, S. Ilayaraja, S. Swaminathan & A.A. Desai (2012). Impact of plant weeds on grass availability in Gaur (*Bos gaurus* H. Smith, 1827) foraging areas of Mudumalai Tiger Reserve, Southern India. *Indian Forester* 138(12): 1131–1140.
- Baskaran, N. (1998). Ranging and Resource utilization by Asian elephant (*Elephas maximus* Linnaeus) in Nilgiri Biosphere Reserve, South India. Ph.D. Thesis, Bharathidasan University, Thiruchirappalli, India.
- Blair, J., J. Nippert & J. Briggs (2014). Grassland Ecology. In: Monson, R.K. (ed). Ecology and the Environment, The Plant Sciences, 8. https://doi.org/10.1007/978-1-4614-7501-9_14
- Caughley, G. & J. Goddard (1975). Abundance and distribution of elephants in Luangwa Valley, Zambia. *East African Wildlife Journal* 13: 39–48.
- Champion, H.G. & S.K. Seth (1968). *Revised survey of forest types in India*, Manager of Publication, New Delhi. 404pp.
- Eltringham, S.K. (1979). The ecology and conservation of large African mammals. University Park Press, Baltimore, 286pp.
- Gamble, J.S. (1935). The Flora of the Presidency of Madras. Adlard and Son's Ltd., London, 143pp.
- Giles, R.H. (1971). Wildlife Management Techniques. The Wildlife Society, Washington, 623pp.
- Hammer, O., D.A.T. Harper & P.D. Ryan (2001). PAST: Paleontological Statistics software package for education and data analysis. *Palaeontol Electron* 4(1): 9
- Jarman, P.J. & A.R.E. Sinclair (1979). Feeding strategy and the pattern of resource-partitioning in ungulates,pp. 130–163. In: Sinclair, A.R.E.
 & M. Norton-Griffiths (eds). Serengeti: Dynamics of an ecosystem, University of Chicago Press, Chicago, 397pp.
- Karthikeyan, S., S.K. Jain, M.P. Nayar & M. Sanjappa (1989). Florae Indicae Enumaratio: Monocotyledonae. Botanical Survey of India, Calcutta, 435pp.
- Kellogg, E.A., J.R. Abbott, K.S. Bawa, K.N. Gandhi, B.R. Kailash, K.N. Ganeshaiah, U.B. Shrestha & P. Raven (2020). Checklist of the grasses of India. *Check List* 163: 1–560.
- Knapp, A.K. & M.D. Smith (2001). Variation among biomes in temporal dynamics of aboveground primary production. *Science* 291: 481– 484.
- Kodandapani, N., M.A. Cochrane & R. Sukumar (2008). A comparative analysis of spatial, temporal and ecological characteristics of forest fires in seasonally dry tropical ecosystem in the Western Ghats, India, *Forest Ecology and Management* 256: 607–617.
- Kochy, M. & S.D. Wilson (2000). Competitive effects of shrubs and grasses in prairie. *Oikos* 91(2): 385–395. https://doi.org/10.1034/ j.1600-0706.2000.910219.x
- Leuthold, W. & J.B. Sale (1973). Movements and patterns of habitat utilization of elephants in Tsavo National Park, Kenya. *East African Wildlife Journal* 11: 369–384.
- Leuthold, W. (1976). Group size in elephants of Tsavo National Park and possible factors influencing it. *Journal of Animal Ecology* 45(2): 425–439.
- McNaughton, S.J. (1985). Ecology of a grazing ecosystem: The Serengeti. Ecological Monograph 55: 259–294.
- Menaut, J.C. & J. Cesar (1979). Structure and primary productivity of Lamto savannas, Ivory Coast. *Ecology* 60(6): 1197–1210.
- Mondal, N. & R. Sukumar (2014). Fire and soil temperatures during controlled burns in seasonally dry tropical forests of southern India. *Current Science* 107: 1590–1594.

Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. Fonseca &

J. Kent (2000). Biodiversity hotspots for conservation priorities. *Nature* 403(6772): 853–858.

- Nath, C.D., H.S. Dattaraja, H.S. Suresh, N.V. Joshi & R. Sukumar (2006). Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, Southern India. *Journal of Bioscience* 31(5): 651–669.
- Robert, J., H.S. Dattaraja, H.S. Suresh & R. Sukumar (2002). Densitydependence in common tree species in a tropical dry forest in Mudumalai, southern India. *Journal of Vegetation Science* 13(1): 45–46.
- Sala, O.E. & J.M. Paruelo (1997). Ecosystem services in grasslands, pp. 237–252. In: Daily, G.C. (ed.). Nature's Services: Societal Dependence on Natural Ecosystem. Island Press, Washington, DC, USA, 412pp.
- Saldanha, C.J. & D.H. Nicolson (1976). Flora of Hassan District, Karnataka, India. Amerind Publishing Company, New Delhi, 915pp.
- Saldanha, C.J. (1984, 1996). Flora of Karnataka Vol. (1 & 2). Oxford & IBH Publishing Company. New Delhi. 535pp.
- Seth, S.K. & O.N. Kaul (1978). Tropical forest ecosystem of India: the teak forests (as a case study of silviculture and management),pp. 628–640. In: *Tropical Forest Ecosystem: A State of Knowledge*. Report by UNESCO/UNEP/FAO, Vendome, France, 683pp.
- Sharma, B.D., B.V. Shetty, K. Vivekanathan & N.C. Rathakrishnan (1977). Flora of Mudumalai wildlife sanctuary, Tamil Nadu. *Journal* of the Bombay Natural History Society 75(1): 13-42.
- Silori, C.S. & B.K. Mishra (2001). Assessment of livestock grazing pressure in and around the elephant corridors in Mudumalai

Wildlife Sanctuary, South India. *Biodiversity and Conservation* 10: 2181–2195.

- Sivaganesan, N. (1991). Ecology and conservation of Asian Elephant (*Elephas maximus*) with special reference to habitat utilization in Mudumalai Wildlife Sanctuary, Tamil Nadu, South India, Ph.D. Thesis, Bharathidasan University, Thiruchirappalli, Tamil Nadu, India, 115pp.
- Skerman, P.J. & F. Riveros (1990). *Tropical Grasses*. Scientific Publishers, Jodhpur, India, 832pp.
- Srinivasan, M.P. (2011). The Ecology of disturbances and global change in the montane grasslands of the Nilgiris, South India. PhD Thesis, Department of biology at the University of Kentucky, USA, 107pp.
- Vanak, A.T. (2013). Conservation and sustainable use of the dry grassland ecosystem in Peninsular India: a quantitative framework for conservation and landscape planning. Report submitted to Ministry of Environment and forest, Government of India, Ashoka Trust for Research in Ecology and Environment, 40pp.
- White, R.P., S. Murray & M. Rohweder (2000). Pilot analysis of global ecosystems: Grassland ecosystems, World Resources Institute, Washington, DC, 69pp.
- Wilson, G., A.A. Desai, D. Sim & W.L. Linklater (2013). The influence of the invasive weed *Lantana camara* on elephant habitat use in Mudumalai Tiger Reserve, Southern India. *Journal of Tropical Ecology* 29(3): 199–207.

Dr. Albert G. Orr, Griffith University, Nathan, Australia

- Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium Dr. Nancy van der Poorten, Toronto, Canada
- Dr. Kareen Schnabel, NIWA, Wellington, New Zealand
- Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
- Dr. Maniu Siliwal, WILD, Coimbatore, Tamil Nadu, India
- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
- Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
- Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
- Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
- Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
- Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
- Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C.,
- Kuwait
- Dr. Himender Bharti, Punjabi University, Punjab, India
- Mr. Purnendu Roy, London, UK
- Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
- Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
- Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
- Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
- Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
- Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
- Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
- Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
- Dr. James M. Carpenter, American Museum of Natural History, New York, USA
- Dr. David M. Claborn, Missouri State University, Springfield, USA
- Dr. Kareen Schnabel, Marine Biologist, Wellington, New Zealand
- Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
- Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
- Dr. Heo Chong Chin, Universiti Teknologi MARA (UITM), Selangor, Malaysia
- Dr. R.J. Shiel. University of Adelaide. SA 5005. Australia
- Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
- Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
- Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
- Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
- Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
- Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
- Dr. Keith V. Wolfe, Antioch, California, USA
- Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
- Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
- Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
- Dr. V.P. Unival, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
- Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
- Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India
- Fishes
- Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
- Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
- Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
- Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
- Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
- Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
- Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
- Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
- Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
- Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Amphibians

- Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
- Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

cal Records.

NAAS rating (India) 5.64

- Dr. Gernot Vogel, Heidelberg, Germany
- Dr. Raju Vyas, Vadodara, Gujarat, India
- Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
- Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
- Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa. India
- Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
- Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek,

National Academy of Agricultural Sciences, NewJour, OCLC WorldCat,

SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoologi-

Birds

- Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
- Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
- Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
- Dr. J.W. Duckworth, IUCN SSC, Bath, UK
- Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India
- Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
- Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
- Mr. J. Praveen, Bengaluru, India
- Dr. C. Srinivasulu, Osmania University, Hyderabad, India
- Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
- Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
- Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
- Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
- Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
- Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK
- Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
- Dr. Simon Dowell, Science Director, Chester Zoo, UK
- Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro,
- Quinta de Prados, Vila Real, Portugal
- Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
- Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

- Dr. Giovanni Amori, CNR Institute of Ecosystem Studies, Rome, Italy
- Dr. Anwaruddin Chowdhury, Guwahati, India
- Dr. David Mallon, Zoological Society of London, UK
- Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India Dr. Angie Appel, Wild Cat Network, Germany
- Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
- Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
- Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.

Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India

Dr. Dan Challender, University of Kent, Canterbury, UK

- Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
- Dr. Mewa Singh, Mysore University, Mysore, India Dr. Paul Racey, University of Exeter, Devon, UK

Dr. Paul Bates, Harison Institute, Kent, UK

Altobello", Rome, Italy

Other Disciplines

Delhi, India

Reviewers 2018-2020

The Managing Editor, JoTT,

ravi@threatenedtaxa.org

Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India

Dr. Justus Joshua, Green Future Foundation, Tiruchirapalli, Tamil Nadu, India

Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA

Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK

Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India

Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal

Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)

Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)

Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa

Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities) Dr. Rayanna Hellem Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil

Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India

Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka

Due to pausity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political

Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

c/o Wildlife Information Liaison Development Society, No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road,

Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia

Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)

Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)

Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New

Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India

Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India

Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

October 2021 | Vol. 13 | No. 12 | Pages: 19675–19886 Date of Publication: 26 October 2021 (Online & Print) DOI: 10.11609/jott.2021.13.12.19675-19886

www.threatenedtaxa.org

Articles

Roosting habits and habitats of the Indian Flying Fox *Pteropus medius* Temminck, 1825 in the northern districts of Tamil Nadu, India

– M. Pandian & S. Suresh, Pp. 19675–19688

Diversity and distribution of avifauna at Warathenna-Hakkinda Environmental Protection Area in Kandy, Sri Lanka

 – Dinelka Thilakarathne, Tithira Lakkana, Gayan Hirimuthugoda, Chaminda Wijesundara & Shalika Kumburegama, Pp. 19689–19701

Grass species composition in tropical forest of southern India

- M. Ashokkumar, S. Swaminathan & R. Nagarajan, Pp. 19702–19713

Communications

Habitat use and conservation threats to Wild Water Buffalo Bubalus arnee (Mammalia: Artiodactyla: Bovidae) in Koshi Tappu Wildlife Reserve, Nepal – Reeta Khulal, Bijaya Neupane, Bijaya Dhami, Siddhartha Regmi, Ganesh Prasad Tiwari & Manita Parajuli, Pp. 19714–19724

Get my head around owls: people perception and knowledge about owls of Andaman Islands

– Shanmugavel Sureshmarimuthu, Santhanakrishnan Babu, Nagaraj Rajeshkumar & Honnavalli Nagaraj Kumara, Pp. 19725–19732

Abundance and diversity of threatened birds in Nangal Wetland, Punjab, India – Rajwinder Kaur & Onkar Singh Brraich, Pp. 19733–19742

Evaluation of fish diversity and abundance in the Kabul River with comparisons between reaches above and below Kabul City, Afghanistan

– Ugyen Kelzang, Ahmad Farid Habibi & Ryan J. Thoni, Pp. 19743–19752

New record of *Myrmarachne melanocephala* MacLeay, 1839 (Araneae: Salticidae) from Jharkhand, India and biogeographical implications of the co-occurrence of its ant model *Tetraponera rufonigra* Jerdon, 1851

- Rahul Kumar, Mirtunjay Sharma & Ajay Kumar Sharma, Pp. 19753-19761

Diversity of spiders (Arachnida: Araneae) and the impact of pruning in Indian sandalwood plantations from Karnataka, India

– S. Padma 1 & R. Sundararaj, Pp. 19762–19772

New records of cheilostome Bryozoa from the eastern coast of India encrusting on the exoskeleton of live horseshoe crabs of Indian Sundarbans

 – Swati Das, Maria Susan Sanjay, Basudev Tripathy, C. Venkatraman & K.A. Subramanian, Pp. 19773–19780

On the pteridophytes of Bherjan-Borajan-Padumoni Wildlife Sanctuary, Assam, India – Pranjal Borah & Jayanta Barukial, Pp. 19781–19790

Population status of *Heritiera fomes* Buch.-Ham., a threatened species from Mahanadi Mangrove Wetland, India

– Sudam Charan Sahu, Manas Ranjan Mohanta & N.H. Ravindranath, Pp. 19791–19798

Additions to the lichenized and lichenicolous fungi of Jammu & Kashmir from Kishtwar High Altitude National Park

 Vishal Kumar, Yash Pal Sharma, Siljo Joseph, Roshinikumar Ngangom & Sanjeeva Nayaka, Pp. 19799–19807

Short Communications

Is release of rehabilitated wildlife with embedded lead ammunition advisable? Plumbism in a Jaguar *Panthera Onca* (Mammalia: Carnivora: Felidae), survivor of gunshot wounds – Eduardo A. Díaz, Carolina Sáenz, E. Santiago Jiménez, David A. Egas & Kelly Swing, Pp. 19808–19812

New record of the Sewing Needle Zipper Loach *Paracanthocobitis linypha* Singer & Page, 2015 (Teleostei: Cypriniformes: Nemacheilidae) from the Chindwin drainage of Manipur, India

- Yumnam Rameshori, Yengkhom Chinglemba & Waikhom Vishwanath, Pp. 19813-19817

Field identification characters to diagnose *Microhyla mukhlesuri* from closely related *M. mymensinghensis* (Amphibia: Microhylidae) and range extension of *M. mukhlesuri* up to West Bengal State, India

- Suman Pratihar & Kaushik Deuti, Pp. 19818-19823

First report of *Scipinia horrida* (Stål) (Heteroptera: Reduviidae) from Assam, with comments on related genus *Irantha* Stål – Anjana Singha Naorem, Santana Saikia, Anandita Buragohain, Rubina Azmeera Begum, Swapnil S. Boyane & Hemant V. Ghate, Pp. 19824–19830

Flesh fly (Diptera: Sarcophagidae): male terminalia, diversity and expanded geographical distribution from India

 Kanholi Sreejith, Shuvra Kanti Sinha, Santanu Mahato & Edamana Pushpalatha, Pp. 19831– 19836

Checklist of moths (Heterocera) of Tadong, Sikkim, India

- Prayash Chettri, Yuki Matsui, Hideshi Naka & Archana Tiwari, Pp. 19837-19848

New distribution records of *Begonia* L., *B. murina* Craib and *B. poilanei* Kiew (Begoniaceae: Cucurbitales) for Laos

– Phongphayboun Phonepaseuth, Phetlasy Souladeth, Soulivanh Lanorsavanh, Shuichiro Tagane, Thyraphon Vongthavone & Keooudone Souvannakhoummane Pp. 19849–19854

Notes

A recent sighting of the Stripe-backed Weasel *Mustela strigidorsa* (Mammalia: Carnivora: Mustelidae) in Hkakabo Razi Landscape, Myanmar

– Sai Sein Lin Oo, Tun Tun, Kyaw Myo Naing & Paul Jeremy James Bates, Pp. 19855–19859

Are the uplifted reef beds in North Andaman letting nesting Olive Ridley Sea Turtle Lepidochelys olivacea stranded?

– Nehru Prabakaran, Anoop Raj Singh & Vedagiri Thirumurugan, Pp. 19860–19863

First record of the orb-weaving spider Araneus tubabdominus Zhu & Zhang, 1993 (Araneae: Araneidae) from India

– Souvik Sen, John T.D. Caleb & Shelley Acharya, Pp. 19864–19866

The genus *Catapiestus* Perty, **1831** (Coleoptera: Tenebrionidae: Cnodalonini) from Arunachal Pradesh with one new record to India – V.D. Hegde & Sarita Yaday, Pp. 19867–19869

Rediscovery and extended distribution of *Indigofera santapaui* Sanjappa (Leguminosae: Papilionoideae) from the states of Maharashtra and Gujarat, India – Kumar Vinod Chhotupuri Gosavi, Sanjay Gajanan Auti, Sharad Suresh Kambale & Munivenkatappa Sanjappa, Pp. 19870–19873

Additional distribution records of *Ceropegia anjanerica*, an endemic and 'Endangered' lantern flower of the northern Western Ghats, India

 Samir Shrikant Maity, Ajay Natha Gangurde, Sharad Suresh Kambale, Avinash Ramchandra Gholave, Avinash Asraji Adsul, Ganesh Babaso Pawar & Kumar Vinod Chhotupuri Gosavi, Pp. 19874–19877

Notes on the extended distribution of *Impatiens megamalayana*, a recently described balsam in Western Ghats, India

– Anoop P. Balan & A.J. Robi, Pp. 19878–19883

Book Review

A look over on the scented tree of India (Santalum album) - S. Suresh Ramanan & A. Arunachalam, Pp. 19884–19886

Publisher & Host

